Backbone colouring: Tree backbones with small diameter in planar graphs
نویسندگان
چکیده
Given a graph G and a spanning subgraph T of G, a backbone k-colouring for (G,T ) is a mapping c : V (G)→ {1, . . . ,k} such that |c(u)− c(v)| ≥ 2 for every edge uv ∈ E(T ) and |c(u)− c(v)| ≥ 1 for every edge uv ∈ E(G) \E(T ). The backbone chromatic number BBC(G,T ) is the smallest integer k such that there exists a backbone k-colouring of (G,T ). In 2007, Broersma et al. [2] conjectured that BBC(G,T ) ≤ 6 for every planar graph G and every spanning tree T of G. In this paper, we prove this conjecture when T has diameter at most four. Key-words: backbone colouring, planar graph, spanning tree ∗ Universidade Federal do Ceará, Fortaleza, Brazil. Partly supported by CNPq/Universal and FUNCAP/Pronem. Email: {campos, rudini}@lia.ufc.br, [email protected] † Projet Mascotte, I3S (CNRS, UNS) and INRIA, Sophia Antipolis. Partly supported by the French Agence Nationale de la Recherche under Grant GRATEL ANR-09-blan-0373-01. Email: [email protected] Coloration dorsale : arbres dorsaux de petit diamètre dans les graphes planaires Résumé : Pour un graphe G et un sous-graphe T de G, une k-coloration dorsale de (G,T ) est une application c : V (G)→ {1, . . . ,k} telle que |c(u)− c(v)| ≥ 2 pour tout arête uv ∈ E(T ) et |c(u)− c(v)| ≥ 1 pour toute arête uv ∈ E(G) \ E(T ). Le nombre chromatique dorsal BBC(G,T ) est le plus petit entier k tel qu’il existe une kcoloration dorsale de (G,T ). En 2007, Broersma et al. [2] ont conjecturé que BBC(G,T ) ≤ 6 pour tout graphe planaire G et tout arbre couvrant T de G. Dans ce rapport, nous montrons cette conjecture lorsque T est de diamètre au plus 4. Mots-clés : coloration dorsale, graphe planaire, arbre couvrant Backbone colouring: tree backbones with small diameter in planar graphs 3
منابع مشابه
The λ-backbone colorings of graphs with tree backbones
The λ-backbone coloring is one of the various problems of vertex colorings in graphs. Given an integer λ ≥ 2, a graph G = (V,E), and a spanning subgraph (backbone) H = (V, EH) of G, a λ-backbone coloring of (G,H) is a proper vertex coloring V → {1, 2, ...} of G in which the colors assigned to adjacent vertices in H differ by at least λ. The λ-backbone coloring number BBCλ(G,H) of (G,H) is the s...
متن کاملBackbone colorings for graphs: Tree and path backbones
We introduce and study backbone colorings, a variation on classical vertex colorings: Given a graph G = (V, E) and a spanning subgraph H of G (the backbone of G), a backbone coloring for G and H is a proper vertex coloring V → {1, 2, . . .} of G in which the colors assigned to adjacent vertices in H differ by at least two. We study the cases where the backbone is either a spanning tree or a spa...
متن کاملQuasi Random Deployment Strategy for Reliable Communication Backbones in Wireless Sensor Networks
Topology construction and topology maintenance are significant sub-problems of topology control. Spanning tree based algorithms for topology control are basically transmission range based type construction algorithms. The construction of an effective backbone, however, is indirectly related to the placement of nodes. Also, the dependence of network reliability on the communication path undertak...
متن کاملCircular Backbone Colorings: on matching and tree backbones of planar graphs
Given a graph G, and a spanning subgraph H of G, a circular q-backbone k-coloring of (G,H) is a proper k-coloring c of G such that q ≤ |c(u) − c(v)| ≤ k − q, for every edge uv ∈ E(H). The circular qbackbone chromatic number of (G,H), denoted by CBCq(G,H), is the minimum integer k for which there exists a circular q-backbone k-coloring of (G,H). The Four Color Theorem implies that whenever G is ...
متن کاملCs 408 Planar Graphs Abhiram Ranade
A graph is planar if it can be drawn in the plane without edges crossing. More formally, a graph is planar if it has an embedding in the plane, in which each vertex is mapped to a distinct point P (v), and edge (u, v) to simple curves connecting P (u), P (v), such that curves intersect only at their endpoints. Examples of planar graphs: Pn, Trees, Cycles, X-tree, K4. Examples of non-planar grap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 487 شماره
صفحات -
تاریخ انتشار 2013